Debiasing Evidence Approximations: on Importance-weighted Autoencoders

ثبت نشده
چکیده

The importance-weighted autoencoder (IWAE) approach of Burda et al. (2015) defines a sequence of increasingly tighter bounds on the marginal likelihood of latent variable models. Recently, Cremer et al. (2017) reinterpreted the IWAE bounds as ordinary variational evidence lower bounds (ELBO) applied to increasingly accurate variational distributions. In this work, we provide yet another perspective on the IWAE bounds. We interpret each IWAE bound as a biased estimator of the true marginal likelihood where for the bound defined on K samples we show the bias to be of order O(K−1). In our theoretical analysis of the IWAE objective we derive asymptotic bias and variance expressions. Based on this analysis we develop jackknife variational inference (JVI), a family of bias-reduced estimators reducing the bias to O(K−(m+1)) for any given m < K while retaining computational efficiency. Finally, we demonstrate that JVI leads to improved evidence estimates in variational autoencoders. We also report first results on applying JVI to learning variational autoencoders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Debiasing Evidence Approximations: on Importance-weighted Autoencoders and Jackknife Variational Inference

The importance-weighted autoencoder (IWAE) approach of Burda et al. (2015) defines a sequence of increasingly tighter bounds on the marginal likelihood of latent variable models. Recently, Cremer et al. (2017) reinterpreted the IWAE bounds as ordinary variational evidence lower bounds (ELBO) applied to increasingly accurate variational distributions. In this work, we provide yet another perspec...

متن کامل

Debiasing Evidence Approximations: on Importance-weighted Autoencoders

The importance-weighted autoencoder (IWAE) approach of Burda et al. (2015) defines a sequence of increasingly tighter bounds on the marginal likelihood of latent variable models. Recently, Cremer et al. (2017) reinterpreted the IWAE bounds as ordinary variational evidence lower bounds (ELBO) applied to increasingly accurate variational distributions. In this work, we provide yet another perspec...

متن کامل

Reinterpreting Importance-weighted Autoencoders

The standard interpretation of importance-weighted autoencoders is that they maximize a tighter lower bound on the marginal likelihood than the standard evidence lower bound. We give an alternate interpretation of this procedure: that it optimizes the standard variational lower bound, but using a more complex distribution. We formally derive this result, present a tighter lower bound, and visua...

متن کامل

Lossy Image Compression with Compressive Autoencoders

We propose a new approach to the problem of optimizing autoencoders for lossy image compression. New media formats, changing hardware technology, as well as diverse requirements and content types create a need for compression algorithms which are more flexible than existing codecs. Autoencoders have the potential to address this need, but are difficult to optimize directly due to the inherent n...

متن کامل

Cognitive debiasing 2: impediments to and strategies for change

In a companion paper, we proposed that cognitive debiasing is a skill essential in developing sound clinical reasoning to mitigate the incidence of diagnostic failure. We reviewed the origins of cognitive biases and some proposed mechanisms for how debiasing processes might work. In this paper, we first outline a general schema of how cognitive change occurs and the constraints that may apply. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017